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Reflection of short pulses in linear optics 

J C EILBECK 
Department of Mathematics, University of Manchester Institute of Science and Technology, 
Manchester M60 lQD, UK 

MS received 30 March 1972 

Abstract. Two methods of calculating the reflected wave generated by a short optical pulse 
falling on a linear dielectric medium are given. As examples the cases of an input sech pulse 
modulating a resonant carrier wave and an input delta function are calculated. At atomic 
densities greater than about 10l8 atoms cm-3 an appreciable amount of the energy of the 
sech pulse is reflected. It is suggested that any nonlinear theory which ignores reflection 
may break down at these densities. 

1. Introduction 

In the last few years much interest has developed in the study of the propagation of 
intense, ultrashort optical pulses in a resonant medium. For an excellent survey of the 
theoretical work in this field we refer the reader to the review of Lamb (1971). Most of 
this research is based on the use of the slowly varying envelope (SVE) approximation, 
in which equations are derived for the envelope modulating a resonant carrier wave. 
Reflection and backscattering are neglected, and the envelope is assumed to be slowly 
varying so that higher derivatives can be dropped. Despite the many theoretical and 
experimental successes of this theory, some recent work (Bullough and Ahmad 1971, 
Bullough and Ahmad to be published) has shown that the SVE approximation is at best 
good only at low optical densities-namely at particle densities less than about 10" cm-3 
for dipole matrix elements of about 10- cgs units. This conclusion has been supported 
by some numerical studies of the exact nonlinear optics equations (Eilbeck and Bullough 
1972). 

In this paper we calculate the reflected wave generated by short optical pulses 
incident on a linear dielectric. This is done both for the intrinsic interest of the problem 
and as a test of the assumptions of the SVE approximation in nonlinear theory. We 
argue that linear theory is applicable at least to the leading and trailing edges of a non- 
linear pulse, and if we find a large amount of energy reflected in linear theory it is un- 
justifiable to ignore reflection and backscattering in any nonlinear theory. 

The advantage of linear reflection theory is that exact results can be obtained, 
subject to the accuracy of some simple numerical calculations. We develop here two 
efficient methods for the numerical calculation of the reflected wave generated by a given 
input pulse. The mathematical methods developed are suitable for any similar linear 
response theories. 

The paper is set out as follows : in 8 2 we review the basic results of linear reflection 
theory and in 0 3 we describe a method suitable for treating short (picosecond) pulses 
which can be described as an envelope modulating a carrier wave. As an example we 
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calculate the case of an input pulse with a hyperbolic secant envelope, a pulse of some 
importance in nonlinear optics (McCall and Hahn 1969, Lamb 1971). In 9 4 we develop 
a method for evaluating the reflected wave in the case where the input pulse is extremely 
short ( 5  10- l 5  s). As a simple example the case of an input 6 function pulse is considered. 

2. Review of linear optics reflection theory 

We start with the well known equation for the reflection of a monochromatic beam of 
light falling on a linear dielectric medium. The dielectric is assumed to occupy the 
half space z > 0 and have a frequency dependent refractive index m. If the incident 
beam E, has frequency 0, then the reflected beam has the same frequency ; the amplitude 
is given by 

where 

1 -m(w) 
F(w) = ___ 

1 + m(w)' 

For finite wave packets E,(ct-z)  and E,(ct+z) with a spread of frequencies, we 
generalize (1) by integrating over all frequencies 

where z1 = c t+z  and E,(o), ER(w) are now the Fourier transforms (FT) of the incoming 
and outgoing pulses E,(t-), ER(z+), defined by 

E(w) = ( 2 7 ~ - ' ' ~  E(z)  e'"" dz. s-+: (4) 

Unfortunately the integral (3) cannot be evaluated analytically, since m is in general 
a complicated function of w, except in the trivial monochromatic case. Since in its 
original form ( 3 )  is a complicated function of (2 ,  t )  which does not make the main features 
and important physical consequences immediately obvious (Whitham 1965), we must 
in general calculate (3) numerically. 

We can gain some physical insight into the form of ER(z +) by expressing the integral 
( 3 )  as a convolution integral 

f n c  

E R ( z + )  = (2n)-'/' F(z')E,(z+ -4) dt '  

From causal considerations we must have F(t) = 0 for z 6 0. With a finite input pulse 
E,  it is easy to show from ( 5 )  that the reflected pulse E, will have a leading edge but no 
trailing edge. The fact that the reflected wave can be longer than the incident pulse is an 
example of optical ringing : it follows that backscattering must be taking place inside 
the medium. Some calculations of the refracted (ie forward travelling) part of the ringing 
wave in nonlinear optics have been carried out by Burnham and Chiao (1969). 
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In order to evaluate (3) we need to know the function m(o). For our purposes an 
adequate model is the two-state atom model (cf Bullough 1970) which gives 

(6) f m2(w) = I+- 
of - w2 

where hw, is the energy difference between the two states; f = 4nne21xoJ22w,h- 
where n is the atomic dipole density and elxOJ is the dipole matrix element. In the follow- 
ing sections we use dimensionless units such that c = w, = 1 : with typical values for w, 
and eJxoJ we have for f in these units 

f = 8nn x (7) 

We give here some properties of the function F(w) which will be needed later. From 
equations (2) and (6) we have 

F(w) = -f- ' [2(wf-w2)+f?2{(w,z-w2 + f ) ( o f - W 2 ) } 1 ' 2 ]  (8) 

with the + sign if w2 > of and the negative sign if w2 < of. From (8) we see that 
F ( o )  has square root branch points at w = ?os, L- U,, where 0,' = of +f. We choose 
the cuts to lie on the real axis, for w such that wf < w2 < wf. From (7) we see that 
the length of these two cuts (w,-w,) will be numerically small compared to w, if 
n << cm- ', If the spectrum of the input pulse E,(o)  is broad with respect to the length 
of these cuts then the most efficient way to calculate the integral (4) is to reduce it to an 
integral along the cut only: this method is described in 8 4. If the spectrum of E, is 
narrower than, or comparable with, the length of the cut, a direct computation of (3) 
as described in 0 3 is sufficient. 

With the choice of cuts given above, F(w) is complex for wf < w2 < U,", and has 
the symmetry properties 

F(w*) = F*(w) ( 9 4  

Im{F(o)} = -Im{F(-U)} (9 b) 

Re{F(o)} = Re{F(-U)}. ( 9 4  

3. Reflection of a modulated sech pulse 

In nonlinear optics a pulse of a hyperbolic secant modulating a resonant carrier wave 
plays an important role in the study of selfinduced transparency (McCall and Hahn 
1969). In this section we consider the linear reflection of this pulse, with the form 
( 0 1  << 

E,(z-) = sech(o,z-) cos(w,z-). (10) 

However the method we describe is suitable for any shape of envelope modulating a 
resonant carrier wave. For our analysis we need the FT of (10) (cf Erdelyi 1954) 

(2n) 1'2 cosh(inw,/o 1) cosh()no/w 1) 

w1 cosh(nw,/o,) +cosh(nw/w,)' 
E,(w) = - 

Due to the resonant carrier wave E,(w) is strongly peaked about w = k w, and hence 
ER(w) from (3) will be peaked in this manner. ER(z+) will be a slowly varying envelope 
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modulating a resonant carrier wave and can be written in the form 

E,(T+) = C(z+) cos(w,z+)+S(z+) sin(o,z+) (12) 

without loss of accuracy. We divide C and S into symmetric and antisymmetric parts 

c = c,  +c- 
s = S+ +s- 

then equating the transforms of (12), (13) with ER(o) = E,(w)F(o) we have 

E,(@) Re{ F ( o ) }  = 3{ C+(o + w,) + C+(w -0,) + S-(O + 0,) - S - ( o  - us)} 

E,(w) Im{ F(o)} = 3{ C-(w + w,) + C-(o - 0,) + S+(w -0,) - S+(W +os)}. 

( 14a) 

(14b) 

Near o N os, where E,(o) is strongly peaked, we can neglect C(w+w,) and S(o+w,) 
in comparison with C(o -w,) and S ( o  - U,). From symmetry considerations we have 

(154 C,(w) = E,(w,+w) Re{F(o,+o)} +E~w,-o)Re{F(w,-o)} 

S * (0) = i E,(o,  + w) Im{ F ( o ,  + U)} + E,(o ,  - w) Im { F ( o ,  - U)>. (1 5 b) 

Note that S + ( o )  = - S - ( o )  since Im{F(o,-w)} = 0 for o > 0. From (15) C, 
and S, are strongly peaked about w 2: 0 so our neglect of terms like C+(2wS) is consis- 
tent. By imposing a cut-off we can invert the Fourier transforms and calculate C,(z+) 
and S , ( T + )  numerically. The envelope functions C and S are plotted, together with the 
input sech envelope E, in figure 1, for a density n = lo2' atoms ~ m - ~ .  The input pulse is 
travelling to the right and the in-phase (C)  and out-of-phase (S) parts of the reflected 
wave are travelling to the left. Note that the trailing edges of both components of the 
reflected wave are larger than that of the input wave (optical ringing). It is apparent 
that at this density any model of pulse propagations must take reflection and back- 
scattering into account. 

Figure 1. Plot of input sech pulse (E) and output in-phase (C)  and out-of-phase (S)  parts of 
the reflected pulse. 



Reflection of short pulses in linear optics 1359 

The fraction of input energy reflected is given by 

which by the Parseval formula (Titchmarsh 1948) is 

We have calculated a as a function of the atomic density n from (17) by numerical 
quadrature. The results are displayed on a log-log scale in figure 2. Note that below 
n ‘v 10l8 less than 1 % of the incoming energy is reflected and hence for these densities 
it is reasonable to neglect the effects of backscattering and reflection. For n 2 lo’’, 
the energy reflected is a rapidly increasing function of density, rising from 2 % reflection 
for n = 10l8 to 90% reflection for n = 10”. It is clear that in this density range any 
theory which ignores reflection and backscattering will be at best a poor approximation 
to the real world. A further interesting feature of figure 2 is that lg(a) is proportional to 
lg(n) for n 5 lo”. 

n (atoms cm-3) 

Figure 2. Fraction of energy of sech pulse reflected as a function of density (log-log scale). 

Linear theory and SVE theory are different approximations to the exact nonlinear 
optics equations (Eilbeck and Bullough 1972). It is obvious from the results described 
above that these two approximations are not consistent, at least at high densities. In 
linear theory strong attenuation (ie m 2 ( o )  < 0) is possible, whereas in SVE theory dis- 
tortionless pulse solutions are possible (zero attenuation). To complete our arguments 
it is necessary to prove that the discrepancy lies in the approximations of SVE theory 
rather than the approximations of linear theory. A physical argument is that in a die- 
lectric without relaxation, reflection and backscattering are the only mechanism for 
attenuation as opposed to dispersion : if the mechanism for attenuation is neglected the 
resulting theory will have no attenuation by construction. A more rigorous mathe- 
matical argument based on characteristic theory is given in the Appendix, with the 
density dependence of the backscattered wave clearly demonstrated. It is shown there 
that the equivalent condition for attenuation, namely m2(w) < 0, is inconsistent with 
the assumptions of SVE theory. 
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4. Reflection of a 6 function pulse 

Generalized function theory gives a well defined FT of the Dirac 6 function (Lighthill 
1958). If E,(T-) = 6(z-) then 

The reflected wave is from (3) and (18) 

where F ( o )  is defined in equation (8). The cuts of F(w), as described in 0 2, are shown in 
the complex w plane in figure 3. The usual causal arguments fix the contour of integra- 
tion in (19) to lie just above the real axis. This contour is shown as C ,  in figure 3. If, 
in (19), z+ < 0 we can add a semicircular contour to C in the upper half plane which 
gives no contribution to the integral. Then by Cauchy’s theorem 

which is merely a restatement of causality. 

Figure 3. The complex L?) plane and the cut structure of F ( o ) .  

If z, > 0 we can add a contour in the lower half plane to form a closed contour. 
This contour can be deformed to get the contour C, shown in figure 3. From the sym- 
metry properties of F (equation (9)) we can reduce the integral (19) round the contour 
C, to a line integral along the right hand cut 

remember that o,’ = w: +f, and that iff is small w, - w, << 0,. Some of the properties of 
ER(?+) can be seen immediately from (21). E ,  is a sinusoidal wave with a frequency 
spectrum having a peak at w N o,(l +$f/w:) and a width proportional to flu,. Since 
Im{F(o)} is of bounded variation, we can obtain a bound an E ,  for large 5 ,  by applying 
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Riemann's lemma (Jeffreys and Jeffreys 1962) to the integral (21). This gives 

ER(z+) = o(Ti '). (22) 

Hence the intensity of the reflected wave goes at least like zY2 for large t+ . 

small time approximation.) For this special case we get from (21b) 
It is only possible to integrate (22) analytically in the limit 1; z+ + 0. (Low density, 

-4- 
'LJ 

&(T+) 2 ---sin(wsz+) z+ > 0. 
2% 

However (21b) is very amenable to numerical calculation. Figure 4 shows a computer 
calculation of the envelope of the reflected wave resulting from a unit S function imping- 
ing on a dielectric with atomic dipole density n = IO2' ~ m - ~ .  

t 

1 I I 1 

0 10 20 30 40 50 60 
r I 2 n  

Figure4. Envelopeofreflected waveresultingfromunitdfunctioninput: n = 10Z1atomscm-3. 

Generalization of this method to deal with other hypershort pulses with simple 
Fourier transforms is straightforward. 
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Appendix 

The basic equation common to both linear and nonlinear theories is the Maxwell wave 
equation, in our dimensionless units 

Ezz-E,, = fptt (A.1) 
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where f is defined in equation (7) and P(z, t) is the microscopic polarization. By intro- 
ducing the magnetic field B(z, t) we can write (A.1) in characteristic form (Eilbeck and 
Bullough 1972) 

d 
(A.2a) -(E+B) = - 4 f p r  ar - 

(A.2b) 

with r* = tkz. Equation (A.2a) described a wave travelling in the negative z direction 
and (A.2b) a wave travelling in the positive z direction. If E + B is initially zero, we can 
integrate (A.24, under the assumption that P, is a function of zero mean, to get 

E + B  = O ( f ) .  ('4.3) 

For small f (low density approximation) we can write E f B  = 0 and the back- 
scattered wave is negligible. Putting E = - B into (A.2b) gives us an equation describing 
a wave travelling to the right only 

E,+E, = -ifpt. (A.4) 

This equation is to be compared with the original wave equation (A.l )  which de- 

If we now look for solutions of (A.l)  and (A.4) of the form E = E, cos(o t -~z) ,  

(A&) 

scribes waves travelling in both directions. 

P = Po cos(wt - KZ) we have from (A. 1) 

(m2 - 1)E, = fP, 
and from (A.4) 

(m- l)E, = ffP, (A.5b) 

where m = K/U. The m2 term in ( A S 4  appears in equation (6 )  and gives rise to attenua- 
tion for values of o such that m2(w) < 0. If we use equation (A%) instead we have only a 
linear term in m and hence attenuation is no longer possible. Thus ignoring the back- 
scattered wave is equivalent to ignoring attentuation and is only justifiable at  low den- 
sities. 

In nonlinear theory the concept of a refractive index is no longer viable, but we 
argue that our general conclusion is still valid, since the distortionless pulse solutions 
of SVE theory are not exact solutions of the basic Maxwell equation (A.l) (Bullough 1971), 
but instead satisfy the SVE version of equation (A.4). 
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